Data Structures and Algorithm Analysis

13

Dr. Syed Asim Jalal
Department of Computer Science
University of Peshawar

Insertion sort

Insertion sort

- A good algorithm for sorting a small number of elements
- It works the way you might sort a hand of playing cards
> Start with an empty left hand and the cards face down on the table
- Then remove one card at a time from the table, and insert it into the correct position in the left hand.
*To find the correct position for a card, compare it with each of the cards already in the hand, from right to left.

At all times, the cards held in the left hand are sorted, and these cards were originally the top cards of the pile on the table

- Divide array into two lists logically

■ One List contains 1 element
> 1 element is always sorted

- Insert other elements into that at its correct position in that list.

Insertion Sort

input array

$\begin{array}{llllll}5 & 2 & 4 & 6 & 1 & 3\end{array}$

at each iteration, the array is divided in two sub-arrays:
left sub-array

sorted
right sub-array
$\begin{array}{lll}6 & 1 & 3\end{array}$
unsorted

Insertion Sort

Insertion Sort Algorithm

Assume Array index starts from 1 to n
INSERTION-SORT(A)
for $j \leftarrow 2$ to n
do key $\leftarrow A[j]$

$$
\begin{aligned}
& i \leftarrow j-1 \\
& \begin{array}{c}
\text { while } i>0 \text { and } A[i]>k e y \\
\text { do } A[i+1] \leftarrow A[i] \\
i \leftarrow i-1
\end{array} \\
& A[i+1] \leftarrow k e y
\end{aligned}
$$

Example:

Insertion sort - Example

	WHILE ($\mathrm{i}>0$)			AND ($\mathrm{A}[\mathrm{i}]>$ key)		
	j	i				
	j=2	$\begin{aligned} & \hline k e y=5 \\ & 85981 \end{aligned}$	$\begin{gathered} \mathrm{i}=1 \\ 88981 \end{gathered}$	$\begin{gathered} \text { i=0 } \\ 58981 \end{gathered}$		
$\underset{\sim}{n}$	j=3	$\begin{aligned} & k e y=9 \\ & 58981 \end{aligned}$	$\begin{gathered} \begin{array}{c} i=2 \\ 58981 \\ \hline \end{array}{ }^{2} \end{gathered}$			
$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \end{aligned}$	$\mathrm{j}=4$	$\begin{aligned} & \hline \text { key }=8 \\ & 58981 \end{aligned}$	$\begin{gathered} \mathrm{i}=3 \\ 58991 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{i}=2 \\ 58891 \\ \hline \end{gathered}$		
	j=5	$\begin{aligned} & \hline \text { key }=1 \\ & 58891 \end{aligned}$	$\begin{gathered} \mathrm{i}=4 \\ 58899 \end{gathered}$	$\begin{gathered} \mathrm{i}=3 \\ 58889 \end{gathered}$	$\begin{gathered} \mathrm{i}=2 \\ 58889 \end{gathered}$	$\begin{aligned} & { }_{c}^{\mathrm{i}=1} \\ & 55889 \\ & \mathrm{i}=0 \\ & 15889 \end{aligned}$

Analysis of Insertion Sort

InSERTION-SORT (A)
for $j \leftarrow 2$ to n

$$
\text { do } k e y \leftarrow A[j]
$$

$$
\begin{aligned}
& i \leftarrow j-1 \\
& \text { while } i>0 \text { and } A[i]>\text { key } \\
& \quad \text { do } A[i+1] \leftarrow A[i] \\
& \quad i \leftarrow i-1 \\
& A[i+1] \leftarrow \text { key }
\end{aligned}
$$

For each $\boldsymbol{j}=2,3 . . n$, where $n=$ length $[A]$, we let t_{j} be the number of times the While loop test in line 5 is executed for that value of j.

Analysis of Best case

INSERTION-SORT (A)	cost	times
for $j \leftarrow 2$ to n	c_{1}	n
\quad do $k e y \leftarrow A[j]$	c_{2}	$n-1$
$\quad i \leftarrow j-1$		
while $i>0$ and $A[i]>k e y$	c_{4}	$n-1$
\quad do $A[i+1] \leftarrow A[i]$	c_{5}	$\mathrm{n}-1$
$i \leftarrow i-1$	c_{6}	0
$A[i+1] \leftarrow k e y$	c_{7}	0
	c_{8}	$n-1$

$$
\begin{aligned}
T(n) & =c_{1} n+c_{2}(n-1)+c_{4}(n-1)+c_{5}(n-1)+c_{8}(n-1) \\
& =\left(c_{1}+c_{2}+c_{4}+c_{5}+c_{8}\right) n-\left(c_{2}+c_{4}+c_{5}+c_{8}\right)
\end{aligned}
$$

Best case: The array is already sorted.

- Always find that $A[i] \leq k e y$ upon the first time the while loop test is run (when $i=j-1$).
- All t_{j} are 1 .
- Running time is

$$
\begin{aligned}
T(n) & =c_{1} n+c_{2}(n-1)+c_{4}(n-1)+c_{5}(n-1)+c_{8}(n-1) \\
& =\left(c_{1}+c_{2}+c_{4}+c_{5}+c_{8}\right) n-\left(c_{2}+c_{4}+c_{5}+c_{8}\right) .
\end{aligned}
$$

- Can express $T(n)$ as $(a n+b)$ for constants a and b (that depend on the statement $\left.\operatorname{costs} c_{i}\right) \Rightarrow T(n)$ is a linear function of n.

Analysis of Worst Case

Insertion-Sort (A)
for $j \leftarrow 2$ to n
do $k e y \leftarrow A[j]$
$i \leftarrow j-1$
while $i>0$ and $A[i]>k e y$
do $A[i+1] \leftarrow A[i]$
$\begin{aligned} i & \leftarrow i- \\ A[i+1] & \leftarrow k e y\end{aligned}$
cost times
$c_{1} \quad n$
$c_{2} n-1$
$c_{4} \quad n-1$
$c_{5} \quad \sum_{j=2}^{n} t_{j}$
$\begin{array}{ll}c_{6} & \sum_{j=2}^{n}\left(t_{j}-1\right) \\ c_{7} & \sum_{j=2}^{n}\left(t_{j}-1\right)\end{array}$
$c_{8} \quad n-1$

Worst Case

- If the array is in reverse sorted order-that is, in decreasing order-the worst case happens.
- We must compare each element $A[j]$ with each element in the entire sorted subarray $A[l . j-1$), and so $t j=j$ for $j=$ 2,3,..., n.

$$
\begin{aligned}
& \sum_{j=2}^{n} j=\frac{n(n+1)}{2}-1 \\
& \text { and } \\
& \sum_{j=2}^{n}(j-1)=\frac{n(n-1)}{2}
\end{aligned}
$$

- Running time is

$$
\begin{aligned}
T(n)= & c_{1} n+c_{2}(n-1)+c_{4}(n-1)+c_{5}\left(\frac{n(n+1)}{2}-1\right) \\
& +c_{6}\left(\frac{n(n-1)}{2}\right)+c_{7}\left(\frac{n(n-1)}{2}\right)+c_{8}(n-1) \\
= & \left(\frac{c_{5}}{2}+\frac{c_{6}}{2}+\frac{c_{7}}{2}\right) n^{2}+\left(c_{1}+c_{2}+c_{4}+\frac{c_{5}}{2}-\frac{c_{6}}{2}-\frac{c_{7}}{2}+c_{8}\right) n \\
& -\left(c_{2}+c_{4}+c_{5}+c_{8}\right)
\end{aligned}
$$

- Can express $T(n)$ as $a n^{2}+b n+c$ for constants a, b, c (that again depend on statement costs) $\Rightarrow T(n)$ is a quadratic function of n.

